
Sinoroc KB

sinoroc

Dec 11, 2023

CONTENTS

I Foreword 1

II Python 5

1 Python package data 7

2 Python packaging 9
2.1 Introduction . 9
2.2 Terminology . 9
2.3 References . 11

3 Packaging tools comparisons 13
3.1 Use cases . 13
3.2 Comparisons . 14

4 Python project version single-sourcing 17
4.1 Problem . 17
4.2 Solution . 17

5 Python project name 19
5.1 Problem . 19
5.2 Solution . 19

6 Python imports 21

7 pytest 23
7.1 Introduction . 23
7.2 pycodestyle and pylint . 23

8 tox 25
8.1 Introduction . 25
8.2 Defaults . 25
8.3 Development environment . 26
8.4 Notes . 26

9 pex 27
9.1 Introduction . 27
9.2 Bootstrap . 27
9.3 Overview . 28
9.4 Inspect . 29
9.5 setuptools . 29

10 Python task runners 31

11 setuptools 33
11.1 Tests . 33

i

11.2 Commands dependencies . 33
11.3 Extend install command . 34

12 Chameleon 37
12.1 Introduction . 37
12.2 Macros . 37
12.3 I18N . 38

13 Working with Python 39
13.1 No pip . 39
13.2 Use isolation . 39
13.3 Use toolmaker . 39
13.4 Use venv . 40
13.5 Do not activate virtual environments . 40
13.6 Interactive debug . 40

14 Fizz buzz 41

III Docker 43

15 Presentation 45

16 Tips 47
16.1 Playground . 47

IV Miscellaneous 49

17 HTML5 51
17.1 Sectioning . 51
17.2 Minimal document . 51

18 Makefile 53
18.1 Links . 53
18.2 Example . 53

19 npm 55
19.1 Packages in home directory . 55

20 Shell 57

V Appendix 59

21 About 61
21.1 Introduction . 61
21.2 Hacking . 61

22 License 63

ii

Part I

Foreword

1

Sinoroc KB

Loosely structured bits of knowledge

Selected chapters

• Python project version single-sourcing (page 17)

• pex (page 27)

• Python packaging (page 9)

• Makefile (page 53)

• HTML5 (page 51)

Author

• sinoroc.gitlab.io1

• sinoroc.github.io2

1 https://sinoroc.gitlab.io
2 https://sinoroc.github.io

3

https://sinoroc.gitlab.io
https://sinoroc.github.io

Sinoroc KB

4

Part II

Python

5

CHAPTER

ONE

PYTHON PACKAGE DATA

Further down is a minimal example showing how to achieve both:

• packaging a data file file.src in sdist only;

• and packaging another data file file.bin in bdist only;

• additionally it shows how file.all is packaged in both distribution packages and file.not in none of
them.

file.bin and built files

Files such as file.bin are not in the original source code of the project (i.e. not in the git source code repository
for example) but should still be installed. Typically these files are created during a build step such as ./setup.
py build for example (think gettext *.mo messages catalogs).

The gist of it is:

• first and foremost, always thoroughly clean up the working directory between two packaging attempts while
tweaking these packaging options (in particular empty the src/Thing.egg-info directory containing the
SOURCES.txt file as well as the build, and dist directories) or the results will be inconsistent;

• set the include_package_data option to True;

• file.all and files that belong in both sdist and bdist are specified in MANIFEST.in;

• file.bin and files that belong in bdist only are specified in package_data;

• file.src and files that belong in sdist only are specified in both MANIFEST.in and
exclude_package_data;

• file.not and files that do not belong in any distribution package are not specified anywhere.

The directory structure for our example:

.
MANIFEST.in
setup.py
src

thing
__init__.py
data

file.all
file.bin
file.not
file.src

In MANIFEST.in:

7

Sinoroc KB

recursive-include src/thing *.all
recursive-include src/thing *.src

In setup.py:

#!/usr/bin/env python3

import setuptools

setuptools.setup(
exclude_package_data={'thing': ['data/*.src']},
include_package_data=True,
package_data={'thing': ['data/*.bin']},
#
name='Thing',
version='1.0.0',
#
package_dir={'': 'src'},
packages=setuptools.find_packages(where='src'),

)

This has been tested with:

• Python 3.6.7

• setuptools 39.0.1

• wheel 0.33.1

8 Chapter 1. Python package data

CHAPTER

TWO

PYTHON PACKAGING

• Introduction (page 9)

• Terminology (page 9)

– Module (page 9)

– Package (page 9)

– Project (page 10)

– Distribution package (page 10)

∗ Source distribution (page 10)

∗ Built distribution (page 11)

· Wheel (page 11)

– Python package index (page 11)

• References (page 11)

2.1 Introduction

About proper packaging of Python projects. . .

2.2 Terminology

2.2.1 Module

Commonly a Python file (mymodule.py). Multiple Python modules are usually gathered in a Python package.

2.2.2 Package

Confusion #1: Import package vs. distribution package

One of the biggest confusion in the Python packaging terminology is around the meaning of the term package.
Sometimes the terms import package and distribution package are used to clarify this.

It is sometimes named import package, as opposed to distribution package (see below).

A Python package is a directory containing at least one Python module __init__.py (the package initializer) and
zero or more additional Python modules. The package initializer can be completely empty, but it has to be there.

9

Sinoroc KB

It is possible for a package to contain other sub-packages in a tree-like structure. The outermost package is then
called the top-level package.

2.2.3 Project

A Python project is usually a collection of code (and sometimes also data) that is intended to be distributed as a
single unit. Typically a Python project is a library, an application, a plugin, a framework, or a toolkit. In most cases
this corresponds to a single source code repository (for example a git, SVN, or CVS repository).

Multiple top-level packages and modules

For example setuptools (version 46.1.2 as of this writing) has two top-level packages setuptools and
pkg_resources. It additionally seems to have one top-level module easy_install.

It is not often the case, but a Python project can contain multiple top-level packages. So of course the name of a
top-level package is not always the same as the name of the project itself. It would be otherwise impossible to have
more than one top-level package per project.

Some Python projects are only made of one or more Python modules directly at the root without tree-like package
structure.

2.2.4 Distribution package

Confusion #2: Distribution package of a Python project vs. Python distribution

The term Python distribution is used to describe a specific implementation or build of a Python interpreter.
CPython is probably the most famous one, but there are plenty of others such as ActiveState Python and Ana-
conda. Further examples: https://wiki.python.org/moin/PythonDistributions

Not to be confused with import package (see above) or Python distribution (see aside).

A distribution package contains a specific release of a project. A release being a snapshot of the Python project
at a certain point in time. A distribution package is always labelled with the name of the project and the version
string for the snapshot.

There are two common types of distribution formats: source distribution and built distribution.

Source distribution

A source distribution, sometimes abbreviated as sdist, is a distribution format.

A source distribution is meant to be installable on all Python interpreters and platforms that the project supports.
It is not tied to a specific Python interpreter implementation, Python interpreter version, operating system, CPU
architecture, CPU bitness. A source distribution can be used to build all the built distributions for all targets the
project supports.

Source distributions are gzip’ed tar files with the .tar.gz. extension.

Attention: It is strongly recommended to always offer at least the sdist of a Python project (for example on
PyPI). The reason is that it is always possible to use the sdist on any platform. On the other hand it is most
likely impossible to use a bdist targetted for another platform.

So if no bdist of the project is available for the target platform, the sdist can still be used and eventually a target
specific bdist can be built locally.

10 Chapter 2. Python packaging

https://wiki.python.org/moin/PythonDistributions

Sinoroc KB

Built distribution

A built distribution, sometimes abbreviated as bdist, is a distribution format. It is designed so that the installation
step is as straightforward as possible. In short: files only need to be extracted from the built distribution archive
and copied to the right locations on disk. It does not require any kind of build step, as all files in a built distribution
are already built for the specific target environment. Build distributions can be platform-specific.

Nowadays the only kind of built distributions one should know about is the wheel. The egg is an older kind of built
distribution that should not be used anymore (use wheel instead).

Wheel

Wheel is a built distribution format. It is the preferred format of distribution package. It is defined by a standard
specification3. A wheel is a file with the .whl extension.

2.2.5 Python package index

The Python package index, commonly called PyPI, is the main repository of Python project distributions packages.

It can be found at following URL:

• https://pypi.org/

2.3 References

• David Beazley “Modules and Packages: Live and Let Die!”

– http://www.dabeaz.com/modulepackage/ModulePackage.pdf

• Glossary — Python Packaging User Guide

– https://packaging.python.org/en/latest/glossary/

3 https://packaging.python.org/en/latest/specifications/binary-distribution-format/

2.3. References 11

https://packaging.python.org/en/latest/specifications/binary-distribution-format/
https://packaging.python.org/en/latest/specifications/binary-distribution-format/
https://pypi.org/
http://www.dabeaz.com/modulepackage/ModulePackage.pdf
https://packaging.python.org/en/latest/glossary/

Sinoroc KB

12 Chapter 2. Python packaging

CHAPTER

THREE

PACKAGING TOOLS COMPARISONS

• Use cases (page 13)

• Comparisons (page 14)

– Development workflow tools (page 14)

– Install Python interpreters (page 14)

– Install packages (page 14)

– Build distributions (page 14)

– Build back-ends (page 15)

– Upload distributions (page 15)

– Manage virtual environments (page 15)

– Lock files (page 16)

3.1 Use cases

Install
Python

Install
packages

Build distri-
butions

Upload distri-
butions

Manage virtual en-
vironments

Lock
files

build no no yes no no no
Flit no yes yes yes yes yes
Hatch no yes yes yes yes no
PDM no yes yes yes yes yes
pip no yes yes no no yes
pip-tools no yes no no no yes
Pipenv no yes no no yes yes
pipx no yes no no no no
Poetry no yes yes yes yes yes
pyenv yes no no no no no
Pyflow yes yes yes yes yes yes
setuptools no yes yes no no no
twine no no no yes no no
venv no no no no yes no
virtualenv no no no no yes no
virtualen-
vwrapper

no no no no yes no

wheel no no yes no no no

Build back-ends are not listed here, but they are in a dedicated section below.

13

Sinoroc KB

3.2 Comparisons

3.2.1 Development workflow tools

[build-system]
(PEP-517)

Build Up-
load

Manage virtual en-
vironments

Interchangeable
build back-end

Plu-
gins

Lock
file

Flit yes yes yes no no no no
Hatch yes yes yes yes yes yes no
PDM yes yes yes yes yes yes yes
Po-
etry

yes yes yes yes no yes yes

Pyflow no yes yes yes no no yes

See also build back-end features in dedicated section.

There is no standard for lock files.

3.2.2 Install Python interpreters

Install Python interpreters
pyenv yes
Pyflow yes

3.2.3 Install packages

Dependency resolution Editable
pip yes yes
pip-tools yes yes
Pipenv yes yes
pipx yes no

pipx is intended to be used to install standalone applications rather than to install packages in a virtual environment.

3.2.4 Build distributions

These tools are also called “build front-ends”.

[build-system] (PEP-517) sdist wheel
build yes yes yes
pip yes no yes
wheel no no yes
dev workflow tools (Hatch, Flit, PDM, Poetry, etc.) yes yes yes

14 Chapter 3. Packaging tools comparisons

Sinoroc KB

3.2.5 Build back-ends

[build-system]
(PEP-517)

[project]
(PEP-621)

Editable installation
(PEP-660)

Extensions con-
figuration

enscons yes yes yes SCONS
flit-core yes yes yes no
hatchling yes yes yes via plug-ins
maturin yes yes yes Cargo (Rust)
meson-python yes yes yes Meson
pdm-backend yes yes yes no
poetry-core yes no yes build.py4

pymsbuild yes no no _msbuild.py
scikit-build-coreyes yes no CMake
setuptools yes yes yes setup.py
trampolim yes yes no no
whey yes yes yes no

3.2.6 Upload distributions

Upload
Flit yes
Hatch yes
PDM yes
Poetry yes
twine yes

3.2.7 Manage virtual environments

For any Python interpreter Description in file
Hatch yes yes5

nox yes yes6

PDM yes no
Pipenv yes no
Poetry yes no
tox yes yes7

venv no no
virtualenv yes no
virtualenvwrapper yes no

Unlike the other tools presented in this section, venv is part of Python’s own standard library, it should be al-
ways available without having to be installed separately. But note that some Linux distributions (e.g. Debian,
Ubuntu, and derivatives) made the decision to package venv separately from the rest of the Python distribution
and consequently it might be necessary to install venv explicitly (typically with a command such as apt install
python3-venv, consult the documentation of the Linux distribution for exact details).

4 Poetry has an undocumented feature allowing the customization of the build process via a build.py file, which indirectly allows the
handling of C extensions (this is comparable to setuptools own setup.py).

5 [tool.hatch.envs] section of pyproject.toml
6 noxfile.py
7 tox.ini

3.2. Comparisons 15

Sinoroc KB

3.2.8 Lock files

There is no PyPA standard for the concept of “lock files”. There is some kind of a de facto convention around pip’s
requirements.txt file format but it can not be considered a good enough lock file format.

Format
pip requirements.txt
pip-tools requirements.txt
Pipenv Pipfile.lock
poetry poetry.lock
PDM pdm.lock

16 Chapter 3. Packaging tools comparisons

CHAPTER

FOUR

PYTHON PROJECT VERSION SINGLE-SOURCING

4.1 Problem

It is not entirely straightforward where the version string should be written within a Python project.

A couple of things are sure:

• the version must be written in a __version__ attribute as a string (see PEP 3968)

• the version string must be available from the setup script

• the version string should be in the changelog

It is annoying to have to keep the version string up to date in these three locations. A solution for single-sourcing
the project version would fix that.

4.2 Solution

This solution shows how to keep the Python project version string in just one place. The suggested location is in
the change log:

Listing 1: CHANGELOG.rst

1 1.2.3
2 =====
3

4 * More bugs fixed
5

6 1.2.2
7 =====
8

9 * Bugs fixed

The current version string should always be on the same line and on its own so that the setup script can easily find
it and extract it:

Listing 2: setup.py

import os
import setuptools

with open(os.path.join(HERE, 'CHANGELOG.rst')) as file_:
changelog = file_.read()

setuptools.setup(
(continues on next page)

8 https://www.python.org/dev/peps/pep-0396/

17

https://www.python.org/dev/peps/pep-0396/

Sinoroc KB

(continued from previous page)

name='Example',
version=changelog.splitlines()[0],
...

)

From the actual code of the project the version number should be accessed via importlib.metadata. Knowing
the name of the project it is easy to get the version string:

Listing 3: src/example/__init__.py

import importlib.metadata

__version__ = importlib.metadata.version('Example')

The importlib.metadata package is part of the standard library starting with Python 3.8. For earlier versions
use importlib-metadata9 instead.

As a positive side effect, changing the version number forces the project maintainer to modify the change log and
thus they always get at least one chance to keep it up to date.

9 https://pypi.org/project/importlib-metadata/

18 Chapter 4. Python project version single-sourcing

https://pypi.org/project/importlib-metadata/

CHAPTER

FIVE

PYTHON PROJECT NAME

5.1 Problem

How to get the name of the project containing the current module (or package)?

• https://stackoverflow.com/a/60363617

• https://stackoverflow.com/a/60351412

• https://stackoverflow.com/a/60975978

• https://stackoverflow.com/a/63849982

5.2 Solution

#!/usr/bin/env python3

import importlib.util
import pathlib

import importlib_metadata

def get_distribution(file_name):
result = None
for distribution in importlib_metadata.distributions():

try:
relative = (

pathlib.Path(file_name)
.relative_to(distribution.locate_file(''))

)
except ValueError:

pass
else:

if relative in distribution.files:
result = distribution

return result

def _alpha():
file_name = importlib.util.find_spec('alpha').origin
distribution = get_distribution(file_name)
print("alpha", distribution.metadata['Name'])

def _bravo():
import bravo
file_name = bravo.__file__

(continues on next page)

19

https://stackoverflow.com/a/60363617
https://stackoverflow.com/a/60351412
https://stackoverflow.com/a/60975978
https://stackoverflow.com/a/63849982

Sinoroc KB

(continued from previous page)

distribution = get_distribution(file_name)
print("bravo", distribution.metadata['Name'])

if __name__ == '__main__':
_alpha()
_bravo()

5.2.1 Update February 2021

Looks like this could be solved in a simpler way thanks to the newly added packages_distributions() function in
importlib_metadata:

• https://importlib-metadata.readthedocs.io/en/stable/using.html#package-distributions

• https://github.com/python/importlib_metadata/pull/287/files

20 Chapter 5. Python project name

https://importlib-metadata.readthedocs.io/en/stable/using.html#package-distributions
https://github.com/python/importlib_metadata/pull/287/files

CHAPTER

SIX

PYTHON IMPORTS

1. Identify clearly what you want your top level modules and packages to be.

2. Make all imports absolute.

3. Either:

• make your project a real installable project, so that those top level modules and packages are installed
in the environment’s site-packages directory;

• or make sure that the current working directory is the one containing the top level modules and pack-
ages.

4. Make sure to call your code via the executable module method instead of the script method:

• DO

– path/to/pythonX.Y -m toplevelpackage.module

– path/to/pythonX.Y -m toplevelmodule

– path/to/pythonX.Y -m toplevelpackage.subpackage (assuming there is a
toplevelpackage/subpackage/__main__.py file)

• DON’T

– path/to/pythonX.Y toplevelpackage/module.py

– path/to/pythonX.Y toplevelmodule.py

5. Later on, once it all works well and everything is under control, you might decide to change some or all
imports to relative. (If things are done right, I believe it could be possible to make it so that it is possible to
call the executable modules from any level within the directory structure as the current working directory.)

References:

• Old reference, possibly outdated, but assuming I interpreted it right, it says that running scripts that live in a
package is an anti pattern, and one should use python -m package.module instead:

– https://mail.python.org/pipermail/python-3000/2007-April/006793.html

– https://www.python.org/dev/peps/pep-3122/

21

https://mail.python.org/pipermail/python-3000/2007-April/006793.html
https://www.python.org/dev/peps/pep-3122/

Sinoroc KB

22 Chapter 6. Python imports

CHAPTER

SEVEN

PYTEST

• Introduction (page 23)

• pycodestyle and pylint (page 23)

– pep8 only (page 24)

– pylint only (page 24)

– Both pep8 and pylint (page 24)

7.1 Introduction

Python test runner

http://pytest.org/

7.2 pycodestyle and pylint

Use the plugins pytest-pep810 and pytest-pylint11.

pep8 vs. pycodestyle

The Python project pep8 has been renamed12 to pycodestyle. But there is no pytest-pycodestyle project
yet.

https://bitbucket.org/pytest-dev/pytest-pep8/issues/15

With these plugins the linting operations are completely integrated within the test workflow. The results of the tests
and linting operations are rendered in a consistent format.

10 https://pypi.python.org/pypi/pytest-pep8
11 https://pypi.python.org/pypi/pytest-pylint
12 https://github.com/PyCQA/pycodestyle/issues/466

23

http://pytest.org/
https://pypi.python.org/pypi/pytest-pep8
https://pypi.python.org/pypi/pytest-pylint
https://github.com/PyCQA/pycodestyle/issues/466
https://bitbucket.org/pytest-dev/pytest-pep8/issues/15

Sinoroc KB

7.2.1 pep8 only

Run only the pep8 linting.

Listing 1: shell console

$ pytest --pep8 -m pep8

7.2.2 pylint only

Run only the pylint linting.

Listing 2: shell console

$ pytest --pylint -m pylint

7.2.3 Both pep8 and pylint

Run both linting tools but not the tests themselves.

Listing 3: shell console

$ pytest --pep8 --pylint -m 'pep8 or pylint'

Run all the tests including the linting tools.

Listing 4: shell console

$ pytest

24 Chapter 7. pytest

CHAPTER

EIGHT

TOX

• Introduction (page 25)

• Defaults (page 25)

• Development environment (page 26)

• Notes (page 26)

– GitLab CI (page 26)

8.1 Introduction

The tox tool allows to easily create multiple Python virtual environments while specifying a list of Python depen-
dencies to install in each environment as well as a list of commands to run in each environment.

The original purpose of the tool is to test the source distribution (sdist) of a Python project against multiple
combinations of Python interpreters and Python dependencies.

• https://tox.readthedocs.io/

8.2 Defaults

Listing 1: tox.ini

[tox]
envlist =

py37
py38

isolated_build = True
...

[testenv]
commands =

python3 -m pytest
extras =

dev_test
...

25

https://tox.readthedocs.io/

Sinoroc KB

8.3 Development environment

It is a good idea to setup an environment for interactive use. The purpose of this environment is to be actually
activated from the interactive shell in order to do the actual development.

The commands configuration setting should be relatively neutral. It can also be left empty. There is no need to
trigger any test suite or linting, since those should be triggered manually once the environment is active.

The environment should contain the dependencies for all use cases: test, build, distribute, and then eventually some
more to develop.

Listing 2: tox.ini

...
[testenv:develop]
commands =
deps =

dev_doc
dev_lint
dev_package
dev_test

usedevelop = True
...

8.4 Notes

8.4.1 GitLab CI

Automatically set the TOXENV environment variable based on the job name:

Listing 3: .gitlab-ci.yml

'.review':
script:
- 'export TOXENV="${CI_JOB_NAME##review}"'
- 'python3 -m pip install tox'
- 'python3 -m tox'

'review py37':
extends: '.review'
image: 'python:3.7'

'review py38':
extends: '.review'
image: 'python:3.8'

26 Chapter 8. tox

CHAPTER

NINE

PEX

• Introduction (page 27)

• Bootstrap (page 27)

• Overview (page 28)

• Inspect (page 29)

• setuptools (page 29)

– Requirements (page 30)

9.1 Introduction

In a couple of words: pex helps create self-contained executable Python virtual environments.

https://pex.readthedocs.io/

https://www.youtube.com/watch?v=NmpnGhRwsu0

9.2 Bootstrap

Bootstrap pex with these steps:

• create a short lived Python virtual environment;

• install pex in this environment;

• use the newly installed pex to create a pex file:

– containing the pex project as well as the dependencies; and

– having the pex console script as its entry point.

With Python 3 and the ~/bin directory on the PATH this could look like this:

Listing 1: shell console

$ python3 -m venv pexenv
$. pexenv/bin/activate
(pexenv) $ pip install pex
(pexenv) $ pex \
> 'pex[requests,cachecontrol]' \
> --console-script=pex \
> --output-file=~/bin/pex
(pexenv) $ deactivate

(continues on next page)

27

https://pex.readthedocs.io/
https://www.youtube.com/watch?v=NmpnGhRwsu0

Sinoroc KB

(continued from previous page)

$ rm --force --recursive pexenv
$ which pex
$ pex --version

The pexenv Python virtual environment can be deleted immediately afterwards. pex can be used directly since it
is self contained in its own Python virtual environment within the ~/bin/pex file.

9.3 Overview

Per default pex starts the Python interpreter in a dynamically created empty virtual environment.

Listing 2: shell console

$ pex
Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> exit()

It is possible to select which Python interpreter should be used.

Listing 3: shell console

$ pex --python=python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> exit()

pex allows to specify which Python projects should be installed in the virtual environment.

Listing 4: shell console

$ pex 'requests<2.0.0' 'setuptools==30'
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> import requests
>>> requests.__version__
'1.2.3'
>>> import setuptools
>>> setuptools.__version__
'30.0.0'
>>> exit()

The dependencies can be specified via a pip requirements.txt file.

Listing 5: shell console

$ pex --requirement=requirements.txt

pex also allows to specify an entry point that should be executed from within the virtual environment.

28 Chapter 9. pex

Sinoroc KB

Listing 6: shell console

$ pex 'httpie==0.9.6' --console-script=http -- --version
0.9.6
$ pex --python=python3 --entry-point=http.server
Serving HTTP on 0.0.0.0 port 8000 ...

Finally pex allows to write this self-contained executable virtual environment into a single file.

Listing 7: shell console

$ pex --python=python3 --entry-point=http.server --output-file=server.pex
$./server.pex
Serving HTTP on 0.0.0.0 port 8000 ...

9.4 Inspect

Since pex files are ZIP archives, inspecting their content is very straighforward.

Listing 8: shell console

$ python -m zipfile -l example.pex
$ unzip -l example.pex

It is a good idea to check that only the required and necessary dependencies are included. Nothing more and
nothing less should be found in the .deps directory.

9.5 setuptools

To easily build a pex executable with setuptools use the bdist_pex command. bdist_pex will use the
console_scripts entry point bearing the exact name of the Python project itself.

9.4. Inspect 29

Sinoroc KB

Listing 9: setup.py

import setuptools

NAME = 'Example'

setuptools.setup(
name=NAME,
entry_points={

'console_scripts': [
'{}=example.app:run'.format(NAME),

],
},
...

)

9.5.1 Requirements

For a stricter control over the dependencies added to the pex file, a requirements.txt file can be specified via
the --pex-args option.

Listing 10: shell console

$ python setup.py bdist_pex --pex-args='--requirement=requirements.txt'

30 Chapter 9. pex

CHAPTER

TEN

PYTHON TASK RUNNERS

• https://pypi.org/project/chuy/

• https://pypi.org/project/doit/

• https://pypi.org/project/invoke/

• https://pypi.org/project/poethepoet/

• https://pypi.org/project/taskipy/

• https://pypi.org/project/thx/

31

https://pypi.org/project/chuy/
https://pypi.org/project/doit/
https://pypi.org/project/invoke/
https://pypi.org/project/poethepoet/
https://pypi.org/project/taskipy/
https://pypi.org/project/thx/

Sinoroc KB

32 Chapter 10. Python task runners

CHAPTER

ELEVEN

SETUPTOOLS

• Tests (page 33)

• Commands dependencies (page 33)

• Extend install command (page 34)

11.1 Tests

Place the tests in the test directory. Per default setuptools adds the test directory to the source distribution
sdist. This can be disabled in the MANIFEST.in.

11.2 Commands dependencies

Graph showing the dependencies between the common setuptools commands:

33

Sinoroc KB

install

bdist_egg

install

install_lib

bdist,bdist_dumb,bdist_wheel

egg_info

build_py

bdist_egg,install,install_lib

install_egg_info

bdist,bdist_dumb,bdist_wheel

build

install_scripts

bdist_dumb bdist_wheel

bdist

sdist

check

develop

build_ext

test

11.3 Extend install command

Warning: This is a work in progress that needs to be improved on.

This shows how to add a subcommand to the install command. This also shows how the subcommand can add
to the list of files to be installed (packaged in a bdist).

class install_something(setuptools.Command):
user_options = [

('install-dir=', 'd', "directory to install to"),
]
def initialize_options(self):

self.install_dir = None
(continues on next page)

34 Chapter 11. setuptools

Sinoroc KB

(continued from previous page)

def finalize_options(self):
self.outputs = []
self.set_undefined_options(

'install',
('install_lib', 'install_dir'),

)
def run(self):

self.outputs.append('package/something.bin')
self.mkpath(self.install_dir + 'package')
self.copy_file(

'src/package/something.bin',
self.install_dir + 'package/something.bin',

)
def get_outputs(self):

return self.outputs

class install(distutils.command.install.install):
_sub_command = (

'install_something',
None,

)
_sub_commands = distutils.command.install.install.sub_commands
sub_commands = [_sub_command] + _sub_commands

11.3. Extend install command 35

Sinoroc KB

36 Chapter 11. setuptools

CHAPTER

TWELVE

CHAMELEON

• Introduction (page 37)

• Macros (page 37)

– Omit tag (page 37)

– Same file (page 37)

• I18N (page 38)

– Babel (page 38)

– lingua (page 38)

12.1 Introduction

• https://pypi.org/project/Chameleon/

• https://chameleon.readthedocs.io/

12.2 Macros

12.2.1 Omit tag

Tags from the namespace tal and metal are omitted. But no specific tag name is required. So use something like
this

<metal: metal:something="whatever">...</metal:>
<tal: tal:something="whatever">...</tal:>

12.2.2 Same file

Use macro from the same template (same file).

The macros are available under template.macros or directly under macros.

<metal: metal:define-macro="ping">pong</metal:>

<metal: metal:use-macro="template.macros['ping']"></metal:>
<metal: metal:use-macro="macros['ping']"></metal:>

37

https://pypi.org/project/Chameleon/
https://chameleon.readthedocs.io/

Sinoroc KB

12.3 I18N

12.3.1 Babel

According to its documentation chameleon should provide a message extractor for Babel, but it is not actually
the case.

https://github.com/malthe/chameleon/issues/12

Use lingua instead. It has a message extractor for chameleon.

12.3.2 lingua

Even though lingua claims in its documentation to always extract messages that do not have a domain, it is not
the case for the chameleon extractor.

Make sure to always specify a domain in the .pt file. Otherwise the messages won’t be extracted by pot-create.

<tal: i18n:domain="MyDomain">
<!-- ... -->
message
<!-- ... -->

</tal:>

38 Chapter 12. Chameleon

https://github.com/malthe/chameleon/issues/12

CHAPTER

THIRTEEN

WORKING WITH PYTHON

13.1 No pip

Do not install a global system-wide version of pip at all.

There is almost never a good reason to install global system-wide packages via pip to begin with. Especially on
Linux where the default version of Python is part of the system and used by the system. So mixing this with Python
projects that the user install install themselves via pip is very likely to cause conflicts sooner rather than later.

13.2 Use isolation

If Python tools are needed to be always available from the command line, then isolate them with zapp, shiv, or pex.

• zapp https://pypi.org/project/zapp/

• shiv https://pypi.org/project/shiv/

• pex https://pypi.org/project/pex/

Those are all zipapp single-file Python executables.

• https://www.python.org/dev/peps/pep-0441/

• https://docs.python.org/3/library/zipapp.html

shiv and pex applications are self extractable. zapp does not need to be extracted. The code is executed directly
from within the zip-compressed archive.

pex applications are executed from their own virtual environment. zapp applications are not executed in a virtual
environment. Not sure about shiv.

shiv applications show up somehow in the current environment. Whereas zapp applications do not, so they are
perfect for tools such as deptree, and pipdeptree.

13.3 Use toolmaker

To automate the creation of single file Python applications with zapp, shiv, or pex, one can use toolmaker.

• https://pypi.org/project/toolmaker/

39

https://pypi.org/project/zapp/
https://pypi.org/project/shiv/
https://pypi.org/project/pex/
https://www.python.org/dev/peps/pep-0441/
https://docs.python.org/3/library/zipapp.html
https://pypi.org/project/toolmaker/

Sinoroc KB

13.4 Use venv

Python 3 has the module venv in its standard library since version 3.3.

• https://docs.python.org/3/library/venv.html

So the need for the third party library virtualenv is much less pressing.

$ python3 -m venv .venv
$. .venv/bin/activate

13.5 Do not activate virtual environments

The scripts that are installed in a virtual environment (with setuptools at least) get a shebang with the full path to
the Python interpeter from the virtual environment. So there is no need to activate the virtual environment to call
such scripts.

$.venv/bin/myscript
$.venv/bin/python3 -m mymodule

13.6 Interactive debug

• https://docs.python.org/3/library/functions.html#breakpoint

breakpoint()

• https://docs.python.org/3/using/cmdline.html#cmdoption-i

python -i main.py

python -i -m something

• https://stackoverflow.com/a/1396386/11138259

import pdb; pdb.set_trace()

Then:

• https://docs.python.org/3/library/pdb.html#pdbcommand-interact

(Pdb) interact
interactive
>>>

Or:

• https://docs.python.org/3/library/code.html#code.interact

import code; code.interact(local=locals())

40 Chapter 13. Working with Python

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/functions.html#breakpoint
https://docs.python.org/3/using/cmdline.html#cmdoption-i
https://stackoverflow.com/a/1396386/11138259
https://docs.python.org/3/library/pdb.html#pdbcommand-interact
https://docs.python.org/3/library/code.html#code.interact

CHAPTER

FOURTEEN

FIZZ BUZZ

Toy implementation of the Fizz buzz game.

#!/usr/bin/env python3

class Injector:

def __init__(self, multiple, word):
self._multiple = multiple
self._output = '{}!'.format(word)

def __call__(self, value):
result = None
if value % self._multiple == 0:

result = self._output
return result

def fizz_buzz(start, end):
injectors = [

Injector(3, 'Fizz'),
Injector(5, 'Buzz'),

]
#
for i in range(start, end + 1):

items = []
output = None
#
for injector in injectors:

item = injector(i)
if item:

items.append(item)
#
if items:

output = ' '.join(items)
else:

output = str(i)
#
print(output)

def main():
fizz_buzz(1, 50)

if __name__ == '__main__':
main()

EOF

41

Sinoroc KB

42 Chapter 14. Fizz buzz

Part III

Docker

43

CHAPTER

FIFTEEN

PRESENTATION

First public presentation of Docker, The future of Linux Containers: https://www.youtube.com/watch?v=
wW9CAH9nSLs

Official website: https://www.docker.com/

45

https://www.youtube.com/watch?v=wW9CAH9nSLs
https://www.youtube.com/watch?v=wW9CAH9nSLs
https://www.docker.com/

Sinoroc KB

46 Chapter 15. Presentation

CHAPTER

SIXTEEN

TIPS

16.1 Playground

Play with Docker in the web browser: https://labs.play-with-docker.com/

47

https://labs.play-with-docker.com/

Sinoroc KB

48 Chapter 16. Tips

Part IV

Miscellaneous

49

CHAPTER

SEVENTEEN

HTML5

17.1 Sectioning

<!DOCTYPE html>
<html lang="en">
<head>
<title>Title</title>
</head>
<body>
<main>
<h1>Title</h1>
<article>
<h2>Section</h2>
<section>
<h3>Subsection</h3>
<p>Content</p>
</section>
</article>
</main>
</body>
</html>

Use following link to validate: https://validator.w3.org/nu/?showoutline=yes

17.2 Minimal document

Shortest valid HTML5 document:

<!DOCTYPE html><title>x</title>

51

https://validator.w3.org/nu/?showoutline=yes

Sinoroc KB

52 Chapter 17. HTML5

CHAPTER

EIGHTEEN

MAKEFILE

18.1 Links

• https://www.gnu.org/software/make/manual/make.html

• http://clarkgrubb.com/makefile-style-guide

• http://gromnitsky.users.sourceforge.net/articles/notes-for-new-make-users/

18.2 Example

input_dir := input
output_dir := output

input_files := $(wildcard $(input_dir)/*.in)
output_files := $(patsubst $(input_dir)/%.in,$(output_dir)/%.out,$(input_files))

vpath %.in $(input_dir)

.DEFAULT_GOAL := all

.PHONY: all
all: $(output_files)

$(output_dir)/%.out: %.in | $(output_dir)
cp $< $@

$(output_dir):
mkdir --parent $@

.PHONY: clean
clean:

$(RM) $(output_files)

Disable default rules and suffixes
(improve speed and avoid unexpected behaviour)
MAKEFLAGS := --no-builtin-rules
.SUFFIXES:

53

https://www.gnu.org/software/make/manual/make.html
http://clarkgrubb.com/makefile-style-guide
http://gromnitsky.users.sourceforge.net/articles/notes-for-new-make-users/

Sinoroc KB

54 Chapter 18. Makefile

CHAPTER

NINETEEN

NPM

19.1 Packages in home directory

This will let npm use a custom directory for globally installed package.

Listing 1: ~/.profile

...
export NPM_PACKAGES="${HOME}/.npm_packages"
PATH="${NPM_PACKAGES}/bin:${PATH}"
NODE_PATH="${NPM_PACKAGES}/lib/node_modules:${PATH}"
...

Listing 2: ~/.npmrc

...
prefix = "${NPM_PACKAGES}"
...

Listing 3: shell interactive console

$. ~/.profile
$ npm install --global npm

55

Sinoroc KB

56 Chapter 19. npm

CHAPTER

TWENTY

SHELL

Create a temporary directory and change to it:

$ cd ($mktemp --directory)
$ cd ($mktemp -d)

List directories by disk usage:

$ du --human-readable | sort --human-numeric-sort --reverse | less
$ du -h | sort -hr | less

$ sudo du --all --human-readable --max-depth=1 / 2>/dev/null | sort --human-numeric-
→˓sort --reverse
$ sudo du -a -d 1 -h / 2>/dev/null | sort -hr

57

Sinoroc KB

58 Chapter 20. Shell

Part V

Appendix

59

CHAPTER

TWENTYONE

ABOUT

21.1 Introduction

Written in reStructuredText13 and built with Sphinx14.

21.1.1 Mirrors

• https://sinoroc.gitlab.io/kb/

• https://sinoroc.github.io/kb/

21.2 Hacking

21.2.1 Repositories

• https://gitlab.com/sinoroc/kb

• https://github.com/sinoroc/kb

21.2.2 Style guide

Use the following for section headings:

• # with overline, for parts

• * with overline, for chapters

• =, for sections

• -, for subsections

• ^, for subsubsections

• ", for paragraphs

Suggestion taken from Python Developer’s Guide15.

13 http://docutils.sourceforge.net/rst.html
14 http://www.sphinx-doc.org/en/stable/index.html
15 https://devguide.python.org/documentation/markup/#sections

61

http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/index.html
https://sinoroc.gitlab.io/kb/
https://sinoroc.github.io/kb/
https://gitlab.com/sinoroc/kb
https://github.com/sinoroc/kb
https://devguide.python.org/documentation/markup/#sections

Sinoroc KB

62 Chapter 21. About

CHAPTER

TWENTYTWO

LICENSE

CC0 1.0 Universal

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer exclusive Copyright and Related Rights
(defined below) upon the creator and subsequent owner(s) (each and all, an “owner”) of an original work of au-
thorship and/or a database (each, a “Work”).

Certain owners wish to permanently relinquish those rights to a Work for the purpose of contributing to a commons
of creative, cultural and scientific works (“Commons”) that the public can reliably and without fear of later claims
of infringement build upon, modify, incorporate in other works, reuse and redistribute as freely as possible in any
form whatsoever and for any purposes, including without limitation commercial purposes. These owners may
contribute to the Commons to promote the ideal of a free culture and the further production of creative, cultural
and scientific works, or to gain reputation or greater distribution for their Work in part through the use and efforts
of others.

For these and/or other purposes and motivations, and without any expectation of additional consideration or com-
pensation, the person associating CC0 with a Work (the “Affirmer”), to the extent that he or she is an owner of
Copyright and Related Rights in the Work, voluntarily elects to apply CC0 to the Work and publicly distribute the
Work under its terms, with knowledge of his or her Copyright and Related Rights in the Work and the meaning and
intended legal effect of CC0 on those rights.

1. Copyright and Related Rights. A Work made available under CC0 may be protected by copyright and related or
neighboring rights (“Copyright and Related Rights”). Copyright and Related Rights include, but are not limited
to, the following:

i. the right to reproduce, adapt, distribute, perform, display, communicate, and translate a Work;

ii. moral rights retained by the original author(s) and/or performer(s);

iii. publicity and privacy rights pertaining to a person’s image or likeness depicted in a Work;

iv. rights protecting against unfair competition in regards to a Work, subject to the limitations in
paragraph 4(a), below;

v. rights protecting the extraction, dissemination, use and reuse of data in a Work;

vi. database rights (such as those arising under Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases, and under any national implemen-
tation thereof, including any amended or successor version of such directive); and

vii. other similar, equivalent or corresponding rights throughout the world based on applicable law or
treaty, and any national implementations thereof.

2. Waiver. To the greatest extent permitted by, but not in contravention of, applicable law, Affirmer hereby overtly,
fully, permanently, irrevocably and unconditionally waives, abandons, and surrenders all of Affirmer’s Copyright
and Related Rights and associated claims and causes of action, whether now known or unknown (including existing
as well as future claims and causes of action), in the Work (i) in all territories worldwide, (ii) for the maximum du-
ration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium
and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, ad-
vertising or promotional purposes (the “Waiver”). Affirmer makes the Waiver for the benefit of each member of
the public at large and to the detriment of Affirmer’s heirs and successors, fully intending that such Waiver shall

63

Sinoroc KB

not be subject to revocation, rescission, cancellation, termination, or any other legal or equitable action to disrupt
the quiet enjoyment of the Work by the public as contemplated by Affirmer’s express Statement of Purpose.

3. Public License Fallback. Should any part of the Waiver for any reason be judged legally invalid or ineffective
under applicable law, then the Waiver shall be preserved to the maximum extent permitted taking into account
Affirmer’s express Statement of Purpose. In addition, to the extent the Waiver is so judged Affirmer hereby grants
to each affected person a royalty-free, non transferable, non sublicensable, non exclusive, irrevocable and uncon-
ditional license to exercise Affirmer’s Copyright and Related Rights in the Work (i) in all territories worldwide,
(ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any
current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the “License”). The License shall be deemed effective
as of the date CC0 was applied by Affirmer to the Work. Should any part of the License for any reason be judged
legally invalid or ineffective under applicable law, such partial invalidity or ineffectiveness shall not invalidate the
remainder of the License, and in such case Affirmer hereby affirms that he or she will not (i) exercise any of his or
her remaining Copyright and Related Rights in the Work or (ii) assert any associated claims and causes of action
with respect to the Work, in either case contrary to Affirmer’s express Statement of Purpose.

4. Limitations and Disclaimers.

a. No trademark or patent rights held by Affirmer are waived, abandoned, surrendered, licensed or
otherwise affected by this document.

b. Affirmer offers the Work as-is and makes no representations or warranties of any kind concerning
the Work, express, implied, statutory or otherwise, including without limitation warranties of title,
merchantability, fitness for a particular purpose, non infringement, or the absence of latent or other
defects, accuracy, or the present or absence of errors, whether or not discoverable, all to the greatest
extent permissible under applicable law.

c. Affirmer disclaims responsibility for clearing rights of other persons that may apply to the Work or
any use thereof, including without limitation any person’s Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary consents, permissions or other
rights required for any use of the Work.

d. Affirmer understands and acknowledges that Creative Commons is not a party to this document and
has no duty or obligation with respect to this CC0 or use of the Work.

For more information, please see <http://creativecommons.org/publicdomain/zero/1.0/>

64 Chapter 22. License

http://creativecommons.org/publicdomain/zero/1.0/

	I Foreword
	II Python
	Python package data
	Python packaging
	Introduction
	Terminology
	Module
	Package
	Project
	Distribution package
	Source distribution
	Built distribution
	Wheel

	Python package index

	References

	Packaging tools comparisons
	Use cases
	Comparisons
	Development workflow tools
	Install Python interpreters
	Install packages
	Build distributions
	Build back-ends
	Upload distributions
	Manage virtual environments
	Lock files

	Python project version single-sourcing
	Problem
	Solution

	Python project name
	Problem
	Solution
	Update February 2021

	Python imports
	pytest
	Introduction
	pycodestyle and pylint
	pep8 only
	pylint only
	Both pep8 and pylint

	tox
	Introduction
	Defaults
	Development environment
	Notes
	GitLab CI

	pex
	Introduction
	Bootstrap
	Overview
	Inspect
	setuptools
	Requirements

	Python task runners
	setuptools
	Tests
	Commands dependencies
	Extend install command

	Chameleon
	Introduction
	Macros
	Omit tag
	Same file

	I18N
	Babel
	lingua

	Working with Python
	No pip
	Use isolation
	Use toolmaker
	Use venv
	Do not activate virtual environments
	Interactive debug

	Fizz buzz

	III Docker
	Presentation
	Tips
	Playground

	IV Miscellaneous
	HTML5
	Sectioning
	Minimal document

	Makefile
	Links
	Example

	npm
	Packages in home directory

	Shell

	V Appendix
	About
	Introduction
	Mirrors

	Hacking
	Repositories
	Style guide

	License

